The Challenge
A leading fuel company needed a reliable process to safely convert large quantities of natural gas products into a liquid, utilizing a liquefaction process. A reliable, automated, small-scale prototype solution was necessary for evaluation prior to deployment in the country of Qatar. It involved very complicated mathematical algorithms for process characterization and verification. Data Science Automation was selected to develop, install and test the entire system in just three weeks!

The Solution
This solution had to control elaborate compressor/expander (compander) units and incorporate a multi-screen application that is flexible enough to allow the user to change tests and export data when demanded. Working under such a tight deadline, NI LabVIEW was selected as the rapid application development environment. An NI GPIB interface was used for controlling an existing Keithley 2700 DMM system to acquire data during the testing process. The solution that was created is based on a three-module software architecture to isolate the main user interface from the other critical acquisition and data management functions.

The Details
Utilizing queue technology native to LabVIEW, an elaborate system was designed to send messages/requests back and forth to control the three independently-operating modules. The main application will request data from the data manager. The data manager will execute complex equations, and condition the raw data that is being acquired by the acquisition manager. The data manager will also service all requests by the main application such as logging to files and controlling the actions of the acquisition manager. The acquisition manager strictly acquires data and publishes the data to the data manager. This three module architecture is flexible enough to account for any issues in the acquisition process without affecting the main application.

The main application, called Scribe, allows the user to define, save, and load file configurations, including all output paths for the raw data files, result data files, hardware configurations, and the calibration files.

When the user initially wants to configure this application they must either use a previous configuration or create a new configuration. The first step in setting up the new configuration is configuring the high channel count Keithley DMM for
What DSA offers is truly…

Risk-free Automation Results for your Enterprise

Call Now and Close the Loop! 724-942-6330

www.DSAutomation.com

Data Science Automation is a full-service automation systems integrator servicing regional, national and international research and manufacturing clients. We solve very difficult technical problems with a unique combination of diverse skills and resources in automation engineering, programming, and information technology. We maintain value added reseller (VAR) and certified integrator status with dozens of leading manufacturers to be your one-stop shop for anything from startup assistance or consulting services, through to complete turnkey system development and installation.

We apply automation technologies to acquire, analyze, present and manage data... to learn, predict, control and optimize processes... for increased productivity, reduced cost, improved quality and to gain deeper knowledge. Give us a call or check out our website to learn more!

The Benefits

Data Science Automation’s prototype solution was created to automate the liquefaction process using commercial compander units. The advanced data acquisition and data analysis techniques were successfully used to simulate the future deployment of large scale natural gas liquefaction processes. This solution leveraged NI LabVIEW software, and the GPIB interface to the Keithley DMM. It has saved countless hours of planning, and eliminated costly field testing by simulating the real world deployment on a smaller scale.

The next step in the configuration process is to setup the measurement names for everything from simple temperature and voltage readings, to outputs from complex equations. These measurement names are aliases for the actual hardware channels or calculations resulting from one or multiple channel inputs. Multiple aliases can be given to a channel for use in multiple calculations. Each of these measurement names are used in calculations during the running stage of the application. Due to the complexity of the liquefaction process multiple calculations must be done to verify the process was successful.

Once all measurement names and variables have been created, the user can configure the proprietary equations based on the measurement names. Each of these equations will be evaluated each iteration of the acquisition process. This real-time approach significantly increased the throughput of the combined research and analysis procedures.

Before starting the test and controlling the compander units, the application initializes queues to start the Keithley Manager and the Data Manager based on configuration and setup information saved in files. Once all parameters and hardware configuration information has been sent, the user will have the ability to calibrate the RTD and non-RTD devices before logging data.

After all calibration has been completed, the test will begin. During the test execution the user will have the ability to view real-time results from the Keithley device and from the sophisticated equation calculations. These results can be exported to file during run time or can be viewed on charts. Data can be saved at automatic intervals or upon user activation.

Key Products Used

- LabVIEW
- GPIB Interface
- Keithley 2700 DMM

native settings such as Temp Scale, Polarity, Auto Zero, etc. The second part to the hardware configuration is to setup each data acquisition channel and their associated transducer inputs. During this configuration the user must specify the type of measurement, scaling, filtering, tag names, and a serial number. This information is stored in the hardware configuration files.